

 Shenzhen Huatongwei International Inspection Co., Ltd.

 Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, Guangdong, China

 Phone: 86-755-26748078
 Fax: 86-755-26748089

 http://www.szhtw.com.cn

Т	EST REPORT	-
Report Reference No	CPS Telecom Limited Office B, 15/F, King Palace Pla Kowloon, H.K. Contrad (Huizhou) Limited No. 8, He Chang East Five Roa	/C: 64613 za, 55 King Yip Street, Kwun Tong, d, Hui Tai Industrial Park, Zhong Kai Zhou City, Guang Dong Province
Test item description:		
Trade Mark: Model/Type reference	CPS CP300	
Listed Model(s): Standard:	- ETSI EN 300 113-1 V1.7.1: 201 ⁴ ETSI EN 300 113-2 V1.5.1: 201 ⁴	
Date of receipt of test sample	Mar. 14, 2017	
Date of testing:	Mar. 15, 2017- Jul. 13, 2017	
Date of issue:	Jul. 14, 2017	
Result:	PASS	
Compiled by (position+printed name+signature): Supervised by	File administrators Candy Liu	Candy Live
(position+printed name+signature):	Project Engineer Lion Cai	from Car
Approved by		11
(position+printed name+signature):	RF Manager Hans Hu	Mours rue
Testing Laboratory Name :	Shenzhen Huatongwei Interna	tional Inspection Co., Ltd.
Address	1/F, Bldg 3, Hongfa Hi-tech Indu Gongming, Shenzhen, China	strial Park, Genyu Road, Tianliao,

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	Test Star	ndards and Test Description	3
1.1.	Test Stand	dards	3
1.2.	Report ver	rsion	3
1.3.	Test Desc	ription	4
<u>2.</u>	<u>Summary</u>	/	5
2.1.	Client Info	rmation	5
2.2.	Product D	escription	5
2.3.	Test frequ	ency list	6
2.4.	EUT opera	ation mode	6
2.5.	EUT confi	guration	6
<u>3.</u>	<u>Test Env</u>	vironment	7
3.1.	Address o	f the test laboratory	7
3.2.	Test Facili		7
3.3.		ental conditions	8
3.4.	Statement	t of the measurement uncertainty	8
3.5.	Equipmen	ts Used during the Test	9
<u>4.</u>	Test Con	ditions and Results	10
4.1.	ETSI EN 3	300 113-1 Transmitter Requirements	10
	4.1.1.	Adjacent Channel Power	10
	4.1.2.	Unwanted emissions in the spurious domain-Conducted	12
	4.1.3.	Unwanted emissions in the spurious domain-Radiated	15
	4.1.4.	Transmitter attack time	18
	4.1.5.	Transmitter Release Time	20
	4.1.6.	Adjacent channel transient power measurements	22
4.2.	ETSI EN 3	300 113-1 Receiver Requirements	25
	4.2.1.	Maximum Usable Sensitivity (Conducted)	25
	4.2.2.	Error behaviour at high input levels	27
	4.2.3.	Co-channel Rejection	28
	4.2.4.	Adjacent Channel Selectivity	30
5.	External	and Internal Photos of the EUT	32

1. Test Standards and Test Description

1.1. Test Standards

The tests were performed according to following standards:

<u>ETSI EN 300 113-1 V1.7.1(2011-11)</u> – Electromagnetic compatibility and Radio spectrum Matters (ERM); Land Mobile Service; Radio equipment intended for the transmission of data(and/or specch) using constant or non-constact envelope modulation and having an antenna connector; Part1: Technical characteristics and methods of measurement.

ETSI EN 300 113-2 V1.5.1(2011-11) – Electromagnetic compatibility and Radio spectrum Matters (ERM); Land Mobile Service; Radio equipment intended for the transmission of data(and/or specch) using constant or non-constact envelope modulation and having an antenna connector; Part1: Technical characteristics and methods of measurement; Part 2: Harmonized EN covering essential requirements under article 3.2 of the R&TTE Directive.

ETSI TR 100 028 (V1.4.1) (all parts):-"Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics".

<u>EN 300 793 V1.1.1 (1998-02)</u>- Electromagnetic compatibility and Radio spectrum Matters (ERM);Land mobile service;Presentation of equipment for type testing

1.2. Report version

Version No.	Date of issue	Description
00	Dec. 20, 2016	Original

1.3. Test Description

Transmitter Requirement				
Test item	Standards requirement	Re	Result	
l est item	(EN 300 113-1)	Pass	N/A	
Frequency error	Sub-clause 7.1.3		\boxtimes	
Carrier power (Conducted)	Sub-clause 7.2.3		\boxtimes	
Maximum effective radiated power	Sub-clause 7.3.3		\square	
Adjacent channel power	Sub-clause 7.4.3	\square		
Unwanted emissions in the spurious domain	Sub-clause 7.5.3	\square		
Intermodulation attenuation	Sub-clause 7.6.3		\boxtimes	
Transmitter attack time	Sub-clause 7.7.3	\square		
Transmitter release time	Sub-clause 7.8.3	\square		
Transient behaviour of the transmitter	Sub-clause 7.9.4	\square		
Receive	r Requirement			
Test item	Standards requirement	Re	sult	
restilem	(EN 300 113-1)	Pass	N/A	
Maximum usable sensitivity	Sub-clause 8.1.3	\square		
Maximum usable sensitivity(field strength)	Sub-clause 8.2.3		\boxtimes	
Level of the wanted signal for the degradation measurements	Sub-clause 8.3		\boxtimes	
Error behaviour at high input levels	Sub-clause 7.4.3		\boxtimes	
Co-channel rejection	Sub-clause 8.5.3	\square		
Adjacent channel selectivity	Sub-clause 8.6.3	\square		
Spurious response rejection	Sub-clause 8.7.7		\boxtimes	
Intermodulation response rejection	Sub-clause 8.8.3		\boxtimes	
Blocking or desensitization	Sub-clause 8.9.3		\boxtimes	
Spurious radiation	Sub-clause 8.10.4		\square	

Note:

1. Equipment may be designed to fulfil the requirements of one or more standards. In the case of combined full bandwidth analogue speech/full bandwidth digital equipment, if the analogue part of the equipment has already been measured according to EN 300 086-1, so the gray test items don't require.

2. N/A: Not Applicable.

2. <u>Summary</u>

2.1. Client Information

Applicant:	CPS Telecom Limited
Address:	Office B, 15/F, King Palace Plaza, 55 King Yip Street, Kwun Tong, Kowloon, H.K.
Manufacturer:	Contrad (Huizhou) Limited
Address:	No. 8, He Chang East Five Road, Hui Tai Industrial Park, Zhong Kai New And High Tech Zones, Hui Zhou City, Guang Dong Province

2.2. Product Description

	1			
Name of EUT:	DMR Walkie Talkie			
Trade mark:	CPS			
Model/Type reference:	CP300			
Listed model(s):	-			
Power supply:	DC 3.8V from battery			
Battery information:	Model: TAD-8200			
	3.8c., 2200mAh/8.36Wh			
Charger information:	Input: 5Vd.c., 2000mA			
	Output: 5Vd.c.,2000mA			
Adapter information:	Model: SA-A564K			
	Input: 220Va.c., 60Hz, 0.3	3A Max		
	Output: 5Vd.c., 2000mA			
Operation Frequency Range:	From 440MHz to 470MHz	Z		
Alignment range type:		R1 🗌 AR2 🗌 AR3		
Rated Output Power:	High Power: 3W (34	4.77dBm) 🛛 Low Power 1W (30.00dBm)		
Modulation Type:	Digital Voice/Digital Data:	4FSK		
Digital Type:	DMR			
Channel Separation:	Digital Voice/Digital Data:	□ 12.5KHz □ 20KHz □ 25KHz		
Emission Designator:	Digital Voice:	☐12.5kHz Channel Separation: 7K60FXW		
		20kHz Channel Separation:		
		25kHz Channel Separation:		
	Digital Data:	☐12.5kHz Channel Separation: 7K60FXD		
		□ 20kHz Channel Separation:		
		□ 25kHz Channel Separation:		
Support data rate:	9.6kbps			
Antenna Type:	External			
Maximum Transmitter Power:	Digital	2.98W for Digital 12.5 kHz Channel Separation		
	9.0			

Note:

The product has the same digital working characters when operating in both two digitized voice/data mode. So only one set of test results for digital modulation modes are provided in this test report.

2.3. Test frequency list

According to EN300793 Annex A:

Modulation Type	Channel	Test	Test Frequency (MHz)		Test	
Modulation Type	Separation	Channel	TX	RX	Description	
Digital /4FSK		CH∟	440.05	440.05	FT	
440-470MHz	12.5kHz	CH _H	469.95	469.95	FT	

2.4. EUT operation mode

Testmade	Transmitting	Dessiving			Power level		· level	Digital/4FSK	
Test mode	Transmitting	Receiving	High	Low	12.5KHz				
TX1	\checkmark		\checkmark		\checkmark				
TX2	\checkmark			\checkmark	\checkmark				
RX1		\checkmark			\checkmark				

 \checkmark : is operation mode.

2.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

• - supplied by the manufacturer

 \bigcirc - supplied by the lab

0	Power Cable	Length (m) :	/
		Shield :	Unshielded
		Detachable :	Undetachable
0	Multimeter	Manufacturer :	/
		Model No. :	/

3. Test Environment

3.1. Address of the test laboratory

Laboratory:Shenzhen Huatongwei International Inspection Co., LTD. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., LTD. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., LTD. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until December 31, 2016.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., LTD. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017.

IC-Registration No.: 5377A&5377B

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., LTD. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016.

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., LTD. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017.

ACA

Shenzhen Huatongwei International Inspection Co., LTD. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

3.3. Environmental conditions

	Temperature	15 °C to +55 °C	
	Relative humidity	20 % to 75 %.	
Normal Conditon		Mains voltage	Nominal mains voltage
Condition	Voltage	Lead-acid battery	1.1 * the nominal voltage of the battery
	voltage	⊠Other	the normal test voltage shall be that declared by the equipment provider
	Temperature	-20 °C to +55 °C for All mobile and handportable equipment, Base stations for outdoor/uncontrolled climate conditions.	
		□ -10 °C to +55 °C for Base stations for indoor/controlled climate conditions	
		Mains voltage	\pm 10 %* the nominal mains voltage
		Lead-acid battery	1,3 and 0,9 multiplied by the nominal voltage of the battery
Extreme Conditon	Voltage	☑Leclanché or the lithium battery	Lower extreme voltage: 0.85*the nominal voltage upper extreme voltage: declared by the equipment provider
	Volidge	Nickel-cadmium battery	Lower extreme voltage: 0.9*the nominal voltage
			upper extreme voltage: declared by the equipment provider
		⊠Other	the normal test voltage shall be that declared by the equipment provider

Normal Conditon	Vn=nominal Voltage	DC 3.80
	Tn=normal Temperature	25 °C
	V _L =lower Voltage	DC 3.23
Extrome Conditon	T _L =lower Temperature	-20 °C
Extreme Conditon	V _H =higher Voltage	DC 3.80
	T _H =higher Temperature	55 °C

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., LTD. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Adjacent and alternate channel power Conducted	1.20 dB	(1)
Conducted spurious emission 9kHz-12.75 GHz	1.60 dB	(1)
Radiated spurious emission 9kHz-12.75 GHz	2.20 dB	(1)
Maximum useable receiver sensitivity	2.80 dB	(1)
Adjacent channel selectivity	2.80 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

3.5. Equipments Used during the Test

Adjac	ent Channel Power				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Receiver	Rohde&Schwarz	ESI26	100009	11/13/2016
2	Digital Radio Test Set	AEROFLEX	3920	299001967	11/13/2016

Maxin	num Usable Sensitivity				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Climate Chamber	ESPEC	EL-10KA	05107008	11/13/2016
2	Vertor Signal Genertor	Rohde&Schwarz	SMU200A	1141.2205.02	11/13/2016
3	Digital Radio Test Set	AEROFLEX	3920	299001967	11/13/2016

Adjac	ent Channel Selectivity				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Vertor Signal Genertor	Rohde&Schwarz	SMU200A	1141.2205.02	11/13/2016
2	RF COMMUNICATION TEST SET	HP	8920A	3813A10206	11/13/2016
3	Signal Generator	Rohde&Schwar z	SMT03	100059	11/13/2016
4	Climate Chamber	ESPEC	EL-10KA	05107008	11/13/2016
5	Digital Radio Test Set	AEROFLEX	3920	299001967	11/13/2016

Trans	ient Frequency Behaviour of Ti	ransmitter			
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Storage Oscilloscope	Yokogawa	DL9140	DU103448	11/13/2016
2	Signal Analyzer	Aglient	N9030A	MY49430428	11/13/2016
3	Spectrum analyzer	Aglient	N9010A	MY58690031	11/13/2016

The Cal. Interval was one year.

4. <u>Test Conditions and Results</u>

4.1. ETSI EN 300 113-1 Transmitter Requirements

4.1.1. Adjacent Channel Power

The adjacent channel power is that part of the total power output of a transmitter under defined conditions of modulation, which falls within a specified pass-band centred on the nominal frequency of either of the adjacent channels. This power is the sum of the mean power produced by the modulation, hum and noise of the transmitter.

<u>LIMIT</u>

ETSI EN 300 113-1 Sub-clause 7.5.3

For a channel separation of 12.5 kHz, 20 kHz and 25 kHz, the adjacent channel power shall not exceed a value of 60.0 dB below the transmitter power(conducted) without the need to be below 0.2uW(-37dBm).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- Inormal condition In Extreme conditions
- 2. Please refer to ETSI EN 300 113-1 Sub-clause 7.4.2 for the measurement method.

TEST MODE:

Please reference to the section 2.4 **TEST RESULTS**

☑ Passed □ Not Applicable

Please refer to the below test data:

Operation Mode	Bit Rate	Test Channel	Test Channel	Measurement Power (dBc)	Limit (dB)	Result
			Lower adjacent	-66.23		
		CH∟	Upper adjacent	-66.15		
TX1	0600655	CH	Lower adjacent	-66.02	< 00	Pass
	9600bps	CH_{M}	Upper adjacent	-65.98	≤-60	Pass
			Lower adjacent	-65.89		
		СН _н	Upper adjacent	-66.12		
			Lower adjacent	-65.48		
		CH∟	Upper adjacent	-65.40		
тур	00006.00		Lower adjacent	-65.27	< 00	Deee
TX2	9600bps	CH_{M}	Upper adjacent	-65.23	≪-60	Pass
			Lower adjacent	-65.14		
		CH _H	Upper adjacent	-65.37		

4.1.2. Unwanted emissions in the spurious domain-Conducted

Spurious emissions are emissions at frequencies other than those of the carrier and sidebands associated with normal modulation.

<u>LIMIT</u>

ETSI EN 300 113-1 Sub-clause 7.5.4

The power of any spurious emission shall not exceed the values given in Table 4 Table 4: Conducted emissions

Frequency range	Tx operating	Tx standby
9 kHz to 1 GHz	0,25 μW (-36 dBm)	2,0 nW (-57 dBm)
above 1 GHz to 4 GHz or above 1 GHz to 12,75 GHz	1,00 µW (-30 dBm)	20 nW (-47 dBm)

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- I normal condition

Extreme conditions

2. Please refer to ETSI EN 300 113-1 Sub-clause 7.5.2 for the measurement method.

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

Please refer to the below test data:

Note:

1) We tested TX1 to TX2, recorded worst case for TX1.

Close to the wanted emission:

Operation	Test	Fregency offset from carrier	RBW	Max. Err Obser		Limit	Result
Mode	Channel	Frequency onset from carrier	(kHz)	Frequency (MHz)	Datum (dBm)	(dBm)	Result
		-500kHz to -100kHz	10	439.66	-40.29		
	CH∟	-100kHz to -250% of the CSP	1	439.97	-46.85	-36	Pass
	Ch	250% of the CSP to 100kHz	1	440.10	-47.76	-30	r ass
TX1		100kHz to 500kHz	10	440.26	-43.81		
		-500kHz to -100kHz	10	469.56	-40.83		
	СН _н	-100kHz to -250% of the CSP	1	469.87	-46.95	-36	Pass
	O H	250% of the CSP to 100kHz	1	470.00	-47.38	-30	r a55
		100kHz to 500kHz	10	470.16	-42.42		

Measurement of spurious emission:

		T	X1			Test Fre	quency	:	С	HL
Spectru	um									
Ref Lev		ID dBm	Offset 21.2	a da	Mode A	uto Sweep				(4
1 Max	01 0.0	o abiii	UNJUE 21.2	0 00	noue at					
						M4	[1]			-51.97 dBm
-10 dBm-									880	.103000 MHz
-20 dBm-						M1	[1]			-44.38 dBm
-30 dBm-						1		Ĩ.	1.32	0193000 GHz
				M1						
_SPURIOU	JS_LIN	E_ABS_	M4	Y	MB			M2		
-50 dBm-			T				1	+ - [-	-	
-60 dBm-		lan		- Julia	and a lot at a star a star	a history and a fail of the starting	and the second second	in the second second second	ender an an air an air bha	
Rudowski		in the last	In the local lines							
		Atlan and an								
-80 dBm-										
-90 dBm-								-		
Start 9.0					6870	4 nts			5	Stop 4.0 GHz
Spurious		sions			0010	1 Pro				
	e Low		Range Up	1	RBW	Frequen	cv	Power Al	os I	∆Limit
9	.000 k	Hz	150.000 kHz		1.000 kHz		742 kHz	-82.23	dBm	-200.00 dB
	.000 k		30.000 MHz		10.000 kHz		94 MHz	-76.52		-200.00 dB
	000 M		1.000 GHz		100.000 kHz	440.069		-14.09		-200.00 dB
50000	.000 G	HZ	4.000 GHz		1.000 MHz	1.320	19 GHz	-44.38	aBm	-200.00 dB
Marker Type	Pof I	Trol	X-value	-	Y-value	Functi	ion I	Erme	tion Res	
M1	Rei	1	1.32019	3 GHz	-44.38 dB		un	Func	alon kes	uit
M2		1	3.08029		-47.63 dE					
M3		1	1.76014		-48.67 dB					
M4		1	880.103	3 MHz	-51.97 dE	3m				
C							Me	asuring		1 420
	(

9kHz-4GHz

4.1.3. Unwanted emissions in the spurious domain-Radiated

Spurious emissions are emissions at frequencies other than those of the carrier and sidebands associated with normal modulation.

<u>LIMIT</u>

ETSI EN 300 113-1 Sub-clause 7.5.4

The power of any spurious emission shall not exceed the values given in Table 5

Frequency range	Tx operating	Tx standby
30 MHz to 1 GHz	0,25 μW (-36 dBm)	2,0 nW (-57 dBm)
above 1 GHz to 4 GHz or above 1 GHz to 12,75 GHz	1,00 μW (-30 dBm)	20 nW (-47 dBm)

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 🛛 normal condition

Extreme conditions

2. Please refer to ETSI EN 300 113-1 Sub-clause 7.5.3 for the measurement method.

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

☑ Passed □ Not Applicable

Note:

1) We tested TX1 to TX2, recorded worst case for TX1.

4.1.4. Transmitter attack time

<u>LIMIT</u>

ETSI EN 300 113-1 Sub-clause 7.7.3

The Transmitter attack time as defined in ETSI EN 300 113-1 Sub-clause 7.7.1,the transmitter attack time shall not exceed 25ms($t_{am} \leq t_{al}$),also a limit at +4dB above the steady state power shall not be exceeded during the transmitter attack time.

TEST CONFIGURATION

TEST PROCEDURE

1. The test conditions.

- ☐ normal condition ☐ Extreme conditions
- 2. Please refer to ETSI EN 300 113-1 Sub-clause 7.7.2 for the measurement method.

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

☑ Passed □ Not Applicable

Please refer to the below test data:

We tested all channels at both TX1 and TX2, recorded worst case for TX1 (Test Channel: CH_H) test condition.

Operation Mode	Test Channel	Test Item	Measurement	Limit	Result
		t _(Pc-6dB)	0.286		
		t _(Pc-30dB)	0.031	-	-
		t _(Pc-1dB)	0.325		
TX1	СН _Н	t _{am}	0.325	≤25ms	
		t _p	0.255	≥0.1ms	Pass
		d _{f0}	0.232	≤1kHz	Fa55
		d _{fe}	0.498	≤6.25kHz	

Noted: $t_{am} = t_{Pc-1dB}, t_{p} = t_{\triangle(Pc-30dB)} - t_{\triangle(Pc-6dB)}$

Refer to test plot as following:

ower									
MultiView	Spectrum								
Ref Level 40 Att TRG:VID	.00 dBm Offse 20 dB • SWT	et 21.20 dB ● R 5 ms ● V	BW 100 kHz BW 300 kHz						
1 Zero Span				M1				M4[1]	●1Pk Clrw 4.84 dBm
30 dBm				M2 ^{M1} M3				M1[1]	31.44 р я 34.62 dBm
20 d8m				and a start					390.00 µs
				1					
10 dBm				ng -					
0 dBm									
-10 dBm	TRG -10.000 dBm-								
-20 dBm									
-30 dBm			<u> </u>						
-40 dBm									
-50 dBm									
CF 469.95 MH	Jaulnett.n.	Manuellik	adabbaa	TRG 100	nts				500.0 µs/
2 Marker Tabl	e			V-Value		Function		Function R	
M1 M2	1	X-Value 390.0 µs 325.28 µs 286.45 µs 31.44 µs		34.62 dBm 33.41 dBm 28.82 dBm 4.84 dBm		i unedoni		T difedori (buit
M3 M4	1 1	286.45 μs 31.44 μs		28.82 dBm 4.84 dBm					
	Ϋ́		Spectrum: W	aiting for Trigger		;	Measuring	4	13.04.2017 21:35:28
<u> </u>									
requency				9					
Spectru	rel 5 0.00 d8 30 d		nod (X 30.00 d8 6 ms	DBW 25 kHz	:				÷
Spectru Ref Lev e Att	rel 5 0.00 d8 30 d	m Offset	30.00 dB				• 1AP Cin	 Ref:200.0 	00 Hz DC
Spectru Ref Lev • Att TRG:EXT A(FM)	rel 5 0.00 d8 30 d	m Offset	30.00 dB		: M1[[1]	• 1AP Cin	232.5533	00 Hz DC
Spectru Ref Lev Att TRG:EXT	rel 5 0.00 d8 30 d	m Offset	30.00 dB				• 1AP Ciri	232.5533 498.1614	00 Hz DC 54736 Hz 882.20 µs 47944 Hz
Spectru Ref Lev • Att TRG:EXT A(FM)	rel 5 0.00 d8 30 d	m Offset	30.00 dB		M1[• 1AP Cin	232.5533 498.1614	00 Hz DC 154736 Hz 882.20 µs
Spectru Ref Let TRG:ExT A(FM) 4.2 kHz- 3.2 kHz-	rel 5 0.00 d8 30 d	m Offset	30.00 dB		M1[• 1AP Cin	232.5533 498.1614	00 Hz DC 54736 Hz 882.20 µs 47944 Hz
Spectru Ref Leve • Att TRG:EXT A(FM) •.2 kHz-	rel 5 0.00 d8 30 d	m Offset	30.00 dB		M1[• 1AP Ciri	232.5533 498.1614	00 Hz DC 54736 Hz 882.20 µs 47944 Hz
Spectru Ref Let TRG:ExT A(FM) 4.2 kHz- 3.2 kHz-	rel 50.00 da 30 d	m Offset	30.00 dB		M1[• 1AP Cin	232.5533 498.1614	00 Hz DC 54736 Hz 882.20 µs 47944 Hz
Spectru Ref Let TRG:ExT A(FM) 4.2 kHz- 3.2 kHz-	rel 50.00 da 30 d	m Offset	30.00 dB		M1[• 1AP Cin	232.5533 498.1614	00 Hz DC 54736 Hz 882.20 µs 47944 Hz
Spectru Ref Let TRG:EXT A(FM) 4.2 kHz- 3.2 kHz-	rel 5 0.00 d8 30 d	m Offset	30.00 dB		M1[• 1AP Cin	232.5533 498.1614	00 Hz DC 54736 Hz 882.20 µs 47944 Hz
Spectru Ref Let TRG:EXT A(FM) 4.2 kHz- 3.2 kHz-	rel 50.00 da 30 d	m Offset	30.00 dB		M1[• 1AP Cin	232.5533 498.1614	00 Hz DC 54736 Hz 882.20 µs 47944 Hz
Spectru Ref Let • Att TRG:EXT A(FM) 4.2 kH2- 3.2 kH2- 2.2 kH2- 1.2 k	rel 50.00 da 30 d	m Offset	30.00 dB		M1[• 1AP Cin	232.5533 498.1614	00 Hz DC 54736 Hz 882.20 µs 47944 Hz
Spectru Ref Lev • Att TRG:EXT A(FM) •.2 kHz- 3.2 kHz- 2.2 kHz- 1.2 kHz- 2.2 kHz- 1.2 kHz-	rel 50.00 da 30 d	m Offset	30.00 dB		M1[• 1AP Cin	232.5533 498.1614	00 Hz DC 54736 Hz 882.20 µs 47944 Hz
Spectru Ref Let • Att TRG:EXT A(FM) 4.2 kH2- 3.2 kH2- 2.2 kH2- 1.2 k	rel 50.00 da 30 d	m Offset	30.00 dB		M1[• 1AP Cin	232.5533 498.1614	00 Hz DC 54736 Hz 882.20 µs 47944 Hz
Spectru Ref Lev • Att TRG:EXT A(FM) 4.2 kH2 3.2 kH2 2.2 kH2 1.2 kH2 1.2 kH2 1.2 kH2 2.0 H2 2.8 kH2 -2.8 kH2	rel 50.00 da 30 d	m Offset	30.00 dB		M1[• 1AP Cin	232.5533 498.1614	00 Hz DC 54736 Hz 882.20 µs 47944 Hz
Spectru Ref Lev • Att TRG:EXT A(FM) 4.2 kH2 3.2 kH2 3.2 kH2 2.2 kH2 1.2 kH2 1.2 kH2 1.2 kH2 1.2 kH2 1.2 kH2 1.2 kH2 1.2 kH2 1.2 kH2	rel 50.00 da 30 d	m Offset	30.00 dB		M1[• 1AP Cin	232.5533 498.1614	00 Hz DC 54736 Hz 882.20 µs 47944 Hz
Spectru Ref Lev • Att TRG:EXT A(FM) • .2 kHz- 3.2 kHz- 2.2 kHz- 1.2 kHz- 2.2 kHz- 2.3 kHz- -2.8 kHz- -3.8 kHz-	rel 50.00 da 30 d	m Offset	30.00 dB				• 1AP Cin	232.5533	00 Hz DC 54736 Hz 882.20 µs 47944 Hz

4.1.5. Transmitter Release Time

<u>LIMIT</u>

ETSI EN 300 113-1 Sub-clause 7.8.3

The Transmitter release time as defined in ETSI EN 300 113-1 Sub-clause 7.8.1,the transmitter release time shall not exceed $20ms(t_m \leq t_{rl})$.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
 - ⊠ normal condition □ Extreme conditions
- 2. Please refer to ETSI EN 300 113-1 Sub-clause 7.8.2 for the measurement method.

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

☑ Passed □ Not Applicable

Please refer to the below test data:

We tested all channels at both TX1 and TX2, recorded worst case for TX1 (Test Channel: CH_H) test condition.

Operation Mode	Test Channel	Test Item	Measurement	Limit	Result	
		t _(Pc-6dB)	0.403			
	CH _H	t _(Pc-30dB)	0.198	-	-	
		t _(Pc-50dB)	0.155			
TX1		t _{rm}	0.155	≤20ms		
		t _d	0.205	≥0.1ms	Pass	
		d _{f0}	0.271	≤1kHz	F 855	
		d _{fe}	0.076	≤6.25kHz		

Noted: $t_{rm} = t_{Pc-50dB}, t_{d=} t_{\triangle(Pc-30dB)} - t_{\triangle(Pc-6dB)}$

Refer to test plot as following:

Time VS Pov	wer										
	MultiView 8	Spectrum									
	Ref Level 40.0 Att TRG:VID	00 dBm Offse 20 dB = SWT	t 21.00 dB ● RE 5 ms ● VE	3W 100 kHz 3W 300 kHz							
	1 Zero Span			M1					M4[1]		
	30 dBm			- W2					M1[1]	6.92 µs] 34.21 dBm	
	20 dBm									-403.80 µs	
	10 dBm										
	0 dBm										
		TRG -10.000 dBm		M	14						
	-20 dBm										
	-30 dBm										
	-40 dBm										
	-50 dBm			т	был 11 с.3		a na haile da ba	a. d. e	NA I	water i	
	CF 469.95 MHz				100 100	1944 July Mark	ul likle a Milh	la del si di bada di	VI ABNI MUMARI ABA J	500.0 μs/	
	2 Marker Table Type Ref	Trc	X-Value		Y-Value		Function		Function Re	sult	
	M1 M2 M3	1 1 1	X-Value -403.8 μs -197.89 μs 155.3 ns		Y-Value 34.21 dBm 28.05 dBm 6.66 dBm						
	M4	1	6.92 µs	Spectrum: Wait	20.59 dBm			Measuring		17.04.2017	
				opectrum, wait	ing for ringger			Measuring		11:08:12	
Time VS Fre	quency									_	
	Spectrun		alog Dem							Ţ	
	Ref Leve Att	44.00 dBm 25 dB			DBW 25 kH	z					
	TRG:EXT								Olau Dafe O	00.00 00	
	A(FM)						M1(1)		Cirw Ref:0 270.935	331055 Hz	
	4 kHz									-197.10 µs	
							42[1]		75.535	731050 Hz -507.30 µs	
	3 kHz					╫╴┌┼╢			HH, A		
	2 kHz					UN.I I U					
	1 kHz				Ma M1						
	0112										
					40						
	-1 kHz				₩.						
	-2 kHz										
	-3 kHz										
	-4 kHz				1					AL THAT I R	
	CF 469.95 N	IHz			691	pts				601.6 µs/	
						Wait	for Trigger			li.	

4.1.6. Adjacent channel transient power measurements

Transient power is the power falling into adjacent (or other) spectrum due to the switching on or off of a transmitter.

LIMIT

ETSI EN 300 113-1 Sub-clause 7.9.4.2

The Adjacent channel transient power measurements as defined in ETSI EN 300 113-1 Sub-clause 7.9.3.3, the ajjacent power shall not exceed a value of:

- 60.0 dB below the transmitter power (conducted) of the transmitter in decibels relative to the carrier power(dBc) without the need to be below 2 uW(-27.0 dBm), for channel separations of 20 KHz and 25 KHz;
- 50.0 dB below the transmitter power (conducted) of the transmitter (in dBc) without the need to be below 2 uW(-27.0 dBm), for a channel separations of 12.5 KHz.

TEST CONFIGURATION

TEST PROCEDURE

1. The test conditions.

☑ normal condition
☑ Extreme conditions

2. Please refer to ETSI EN 300 113-1 Sub-clause 7.9.3.2 for the measurement method.

TEST RESULTS

Mode: TX-on \rightarrow TX-off

Operation Mode	Test Channel	Test Channel	Measurement Power (dBc)	Limit (dB)	Result	
	CHL	Lower adjacent	-58.50			
	Ch	Upper adjacent	-59.75			
TX1	СНм	Lower adjacent	-58.57	≪-50	Pass	
	CHM	Upper adjacent	-59.47	≪-30		
	СН _Н	Lower adjacent	-58.58			
	СП _Н	Upper adjacent	-59.36			
	CH∟	Lower adjacent	-58.75		Pass	
		Upper adjacent	-59.64			
TX2	СНм	Lower adjacent	-58.25	<		
172	CHM	Upper adjacent	-59.77	≤-50		
	СН _Н	Lower adjacent	-58.64			
	СПН	Upper adjacent	-59.59			

Mode: TX-off \rightarrow TX-on

Operation Mode	Test Channel	Test Channel	Measurement Power (dBc)	Limit (dB)	Result	
	CH∟	Lower adjacent	-58.25			
	GHL	Upper adjacent	-58.77			
TX1	СНм	Lower adjacent	-58.88	≪-50	Pass	
	CHM	Upper adjacent	-59.64	≪-30		
	СН _н	Lower adjacent	-58.65			
	СП _Н	Upper adjacent	-57.75			
	CH∟	Lower adjacent	-58.36		Pass	
	Ch	Upper adjacent	-59.47			
TX2	СНм	Lower adjacent	-58.58	≤-50		
1 X 2	CHM	Upper adjacent	-59.36			
	СН _н	Lower adjacent	-58.65			
	UNH UNH	Upper adjacent -59.88				

4.2. ETSI EN 300 113-1 Receiver Requirements

4.2.1. Maximum Usable Sensitivity (Conducted)

The maximum usable sensitivity (data or messages, conducted) is the minimum level of signal (emf) at the receiver input, produced by a carrier at the nominal frequency of the receiver, modulated with the normal test signal which will, without interference, produce after demodulation a data signal with a specified bit error ratio or a specified successful message ratio. The specified bit error ratio is 10⁻². The specified successful message ratio is 80 %.

<u>LIMIT</u>

ETSI EN 300 113-1 Sub-clause 8.1.3

The maximum usable sensitivity shall not exceed the values given in table 9 under normal test conditions, and the values in table 9 plus 6 dB under extreme test conditions.

Table 9: Sensitivity levels (mean power) for different channel bandwidths and gross (on-air) bit rates

Channel BW	Data Rate	Sensitivity
	9,6 kbit/s or less	-110 dBm
12,5 kHz	more than 9,6 kbits to 16 kbit/s	-105 dBm
	more than 16 kbits to 38,4 kbit/s	-98 dBm
	greater than 38,4 kbit/s	-93 dBm
	9,6 kbit/s or less	-110 dBm
20 kHz and 25 kHz	more than 9,6 kbit/s to 38,4 kbit/s	-105 dBm
	more than 38,4 kbits to 76,8 kbit/s	-98 dBm
	greater than 76,8 kbit/s	-93 dBm

TEST CONFIGURATION

TEST PROCEDURE

1. The test conditions.

⊠ normal condition ⊠ Extreme conditions

2. Please refer to ETSI EN 300 113-1 Sub-clause 8.1.2.2 for the measurement method.

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

☑ Passed □ Not Applicable

Please refer to the below test data:

Operation Mode	Bit Rate (bps)	Temperature (℃)	Voltage (V)	Test Channel	Measured (dBm)	Limit (dBm)	Result
		Tn	Vn	CH∟	-114.0	≪-110	Deee
		IN	VII	СН _Н	-113.0	≪-110	Pass
			V _H	CH_{L}	-113.5	≤-104	Pass
		т		СН _н	-112.0		
RX1	9600	ΤL	V	CH∟	-113.2		
KA I	9600		VL	СН _Н	-112.2		
		_	V	CH_{L}	-113.1		Data
			V _H	СН _н	-112.1	< 101	
		Т _н	V	CH∟	-112.4	≤-104	Pass
			VL	СН _н	-112.0		

4.2.2. Error behaviour at high input levels

The error behaviour (performance) at high input levels (noise free operation) is defined by the bit error ratio (continuous bit stream) or by the number of messages lost or corrupted when the level of the wanted signal is significantly above the maximum usable sensitivity.

<u>LIMIT</u>

ETSI EN 300 113-1 Sub-clause 8.4.3

The Error behaviour at high input levels of the receiver as defined as in ETSI EN 300 113-1 Sub-clause 7.4.1 The bit error (continuous bit stream) shall not exceed 10^{-4} .

The number of messages not correctly received (lost or corrupted) shall not exceed 1.

TEST CONFIGURATION

TEST PROCEDURE

1. The test conditions.

☑ normal condition
□ Extreme conditions

2. Please refer to ETSI EN 300 113-1 Sub-clause 7.4.2 for the measurement method.

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

According to table A.1 of EN300 113-2 Annex A, this test item is not require.

4.2.3. Co-channel Rejection

The co-channel rejection is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due the presence of an unwanted modulated signal, both signals being at the nominal frequency of the receiver.

<u>LIMIT</u>

ETSI EN 300 113-1 Sub-clause 8.5.3

At any frequency of the unwanted signal within the specified range, shall be between:

the value of the co-channel rejection ratio, expressed in dB, is generally negative (therefore, for example, -12 dB is lower than -8 dB)

The value of the co-channel rejection ratio, expressed in dB, at the signal displacements given in the method of measurement, shall be between the values given in table 11.

Table 11: Co-channel limits (mean power) for different channel bandwidths and gross (on-air) bit rates

Channel BW	Data Rate	Sensitivity		
	9,6 kbit/s or less	between 12,0 dB and 0 dB		
12,5 kHz	more than 9,6 kbits to 16 kbit/s	between 17,0 dB and 0 dB		
	more than 16 kbits to 38,4 kbit/s	between 24,0 dB and 0 dB		
	greater than 38,4 kbit/s	between 29,0 dB and 0 dB		
	9,6 kbit/s or less	between 8,0 dB and 0 dB		
20 kHz and 25 kHz	more than 9,6 kbit/s to 38,4 kbit/s	between 12,0 dB and 0 dB		
	more than 38,4 kbits to 76,8 kbit/s	between 19,0 dB and 0 dB		
	greater than 76,8 kbit/s	between 24,0 dB and 0 dB		

TEST CONFIGURATION

TEST PROCEDURE

The test conditions.
 normal condition

Extreme conditions

2. Please refer to ETSI EN 300 113-1 Sub-clause 8.5.2.2 for the measurement method.

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

☑ Passed □ Not Applicable

Please refer to the below test data:

Operation Mode	Bit Rate (bps)	Test Channel	Measurement Offset (kHz)	SG B – SG A (dB)	Limit (dB)	Result
			-1.5	-7.5		Pass
		CH∟	0	-8.2	-12.0~0	
RX1	9600		1.5	-7.6		
	9000	5	-1.5	-10.5		
		CH _н	0	-11.2	-12.0~0	Pass
			1.5	-9.8		

4.2.4. Adjacent Channel Selectivity

The adjacent channel selectivity is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted signal which differs in frequency from the wanted signal by an amount equal to the adjacent channel separation for which the equipment is intended.

<u>LIMIT</u>

ETSI EN 300 113-1(V.1.7.1) Sub-clause 8.6.3

The adjacent channel selectivity for different channel separations shall not be less than the values given in table 12.

Table 12: Adjacent channel selectivity

	Channel separation				
	12,5 kHz	20/25 kHz			
normal test conditions	60,0 dB	70,0 dB			
extreme test conditions	50,0 dB	60,0 dB			

TEST CONFIGURATION

TEST PROCEDURE

1. The test conditions.

☑ normal condition
☑ Extreme conditions

2. Please refer to ETSI EN 300 113-1 Sub-clause 8.6.2.2 for the measurement method.

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

☑ Passed □ Not Applicable

Please refer to the below test data:

Operation	Test Cond	dition	Test	Measurement	SG B–SG A	Limit	
Mode	Temperature (℃)	Voltage (V)	Channel Position		(dB)	(dB)	Result
			CH∟	Lower adjacent	66.5		
	Tn	Vn	CHL	Upper adjacent	65.2	≥60	Pass
	111	VII	СН _н	Lower adjacent	63.5	≥00	F 855
			CHH	Upper adjacent	64.7		
			CH∟	Lower adjacent	66.4		
		V _H	CIT	Upper adjacent	65.1	≥50	Pass
	TL	VH	CH _H	Lower adjacent	63.6	≥50	1 235
				Upper adjacent	65.2		
		VL	CH∟	Lower adjacent	65.8	≥50	Pass
RX1				Upper adjacent	65.1		
			CH _H	Lower adjacent	63.6		
				Upper adjacent	65.2		
			CH∟	Lower adjacent	66.1		Pass
		V _H	On	Upper adjacent	65.8	≥50	
		vн	СН	Lower adjacent 63.5	63.5	≥30	r ass
	Т _н		СН _н	Upper adjacent	64.8		
	ЧН		CH∟	Lower adjacent	66.5		
		V		Upper adjacent	65.6	≥50	Pass
		V_L		Lower adjacent	63.7		r ass
			СН _Н	Upper adjacent	64.5		

Remark: Bit Rate(bps)=9600

5. External and Internal Photos of the EUT

Reference to the test report No.: TRE1703011901.

-----End of Report------