SAR TEST REPORT **APPLICANT** : CPS Telecom Limited PRODUCT NAME Walkie Talkie MODEL NAME CP228 **CPS** TRADE NAME BRAND NAME **CPS** FCC ID V49CP228 47CFR 2.1093 STANDARD(S) IEEE 1528-2013 ISSUE DATE 2017-04-10 # SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website. # **DIRECTORY** | TEST REPORT DECLARATION | 2 | |---|--------| | | | | 1.TECHNICAL INFORMATION | ·····5 | | | | | 1.1 Identification of Applicant ····· | | | 1.2 Identification of Manufacturer····· | | | 1.3 EQUIPMENT UNDER TEST (EUT) ······ | | | 1.3.1 PHOTOGRAPHS OF THE EUT····· | | | 1.3.2 IDENTIFICATION OF ALL USED EUT····· | | | 1.4 APPLIED REFERENCE DOCUMENTS | е | | | _ | | 2. SPECIFIC ABSORPTION RATE (SAR)······ | ٠٠٠٠٠٤ | | 2.1 Introduction | 8 | | 2.2 SAR DEFINITION | 8 | | | | | 3. SAR MEASUREMENT SETUP······ | g | | 3.1 THE MEASUREMENT SYSTEM ······ | c | | 3.2 PROBE | | | 3.3 Probe Calibration Process ······· | | | 3.3.1 DOSIMETRIC ASSESSMENT PROCEDURE ······· | | | 3.3.2 FREE SPACE ASSESSMENT PROCEDURE | | | 3.3.3 TEMPERATURE ASSESSMENT PROCEDURE··································· | | | 3.4 PHANTOM | | | 3.5 DEVICE HOLDER | | | | | | 4. TISSUE SIMULATING LIQUIDS ······ | 13 | | | | | 5. UNCERTAINTY ASSESSMENT ······ | ····15 | | 5.1 UNCERTAINTY EVALUATION FOR EUT SAR TEST······· | 1 5 | | 5.2 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK ···································· | | | 6. SAR MEASUREMENT EVALUATION | |---| | 6.1 SYSTEM SETUP | | 6.2 VALIDATION RESULTS | | 7. OPERATIONAL CONDITIONS DURING TEST19 | | 7.1 Information on the testing ———————————————————————————————————— | | 7.2 Body-worn Configurations20 | | 7.3 MEASUREMENT PROCEDURE ······20 | | 7.4 DESCRIPTION OF INTERPOLATION/EXTRAPOLATION SCHEME21 | | 9. MEASUREMENT OF CONDUCTED PEAK OUTPUT POWER22 | | 10. TEST RESULTS LIST23 | | 11. ANNEX A PLOTS OF HIGH SAR TEST RESULTS25 | | 12. ANNEX B SYSTEM CHECK DATA | | 13. ANNEX C GENERAL INFORMATION41 | | 14. ANNEX D EUT TEST POSITION PHOTOS43 | | Change History | | | |------------------------------|------------|-------------------| | Issue Date Reason for change | | Reason for change | | 1.0 | 2017-04-10 | First edition | | | | | # **TEST REPORT DECLARATION** | Applicant | CPS Telecom Limited | | | |-----------------------------------|--|--|--| | Applicant Address | Office B, 15/F, King Palace Plaza, 55 King Yip Street, Kwun Tong, Kowloon, Hong Kong | | | | Manufacturer | Contrad (HuiZhou) Ltd. | | | | Manufacturer Address | No.8, He Chuang East 5 Road, HuiTai Industrial Park, ZhongKai
New And High-Tech Zone, Huizhou City, Guangdong Provice,
China | | | | Product Name | Walkie Talkie | | | | Model Name | CP228 | | | | Brand Name | CPS | | | | HW Version | N/A | | | | SW Version | N/A | | | | Test Standards | 47CFR 2.1093; IEEE 1528-2013 | | | | Test Date | 2017-03-22 | | | | The Highest Reported 1g-SAR(W/kg) | Head 0.101W/kg (50% duty cycle) Body 0.224W/kg (50% duty cycle) Limit(W/kg): 8.0W/kg | | | | Reviewed by | : | LinJun | |-------------|---|-------------| | | | Liu Jun | | Approved by | : | Peng Hu | | | | Peng Huarui | # 1.TECHNICAL INFORMATION Note: the Following data is based on the information by the applicant. # 1.1 Identification of Applicant | Company Name: | CPS Telecom Limited | | |---------------|---|--| | Address: | Office B, 15/F, King Palace Plaza, 55 King Yip Street, Kwun | | | | Tong, Kowloon, Hong Kong | | # 1.2 Identification of Manufacturer | Company Name: | Contrad (HuiZhou) Ltd. | | |---------------|---|--| | Address: | No.8, He Chuang East 5 Road, HuiTai Industrial Park, ZhongKai | | | | New And High-Tech Zone, Huizhou City, Guangdong Provice, | | | | China | | # 1.3 Equipment Under Test (EUT) | Model Name: | CP228 | |------------------------|----------------------------------| | Trade Name: | CPS | | Brand Name: | CPS | | Hardware Version: | N/A | | Software Version: | N/A | | Frequency Bands: | 462.5500 – 467.7125MHz | | Rated Power: | N/A | | Antenna type: | External Antenna | | Development Stage: | Identical prototype | | Battery Model: | CB28 | | Battery specification: | 3.7V 1100mAh | | Exposure Category:: | Occupational/Controlled Exposure | ### 1.3.1 Photographs of the EUT Please refer to the External Photos for the Photos of the EUT #### 1.3.2 Identification of all used EUT The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the Following two numerical characters indicate the software version of the test sample. | EUT
Identity | Hardware Version | Software Version | |-----------------|------------------|------------------| | 1# | N/A | N/A | # 1.4 Applied Reference Documents Leading reference documents for testing: | | adding reference decamente for teating. | | | | |-----|---|---|--|--| | No. | Identity | Document Title | | | | 1 | 47 CFR§2.1093 | Radiofrequency Radiation Exposure Evaluation: Portable | | | | | | Devices | | | | 2 | IEEE 1528-2013 | IEEE Recommended Practice for Determining the Peak | | | | | | Spatial-Average Specific Absorption Rate (SAR) in the Human | | | | | | Head from Wireless Communications Devices: | | | | | | Measurement Techniques | | | | 3 | KDB 447498 D01v06 | General RF Exposure Guidance | | | | 4 | KDB 643646 D01v01r03 | SAR Test for PTT Radios | | | | 5 | KDB 865664 D01v01r04 | SAR Measurement 100 MHz to 6 GHz | | | | 6 | KDB 865664 D02v01r02 | SAR Reporting | | | # 1.5 Device Category and SAR Limits **Uncontrolled Environment** Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. # **Controlled Environment** Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. ### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | #### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | Note: This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for Occupational/Controlled Exposure should be applied for this device, it is 8.0 W/kg as averaged over any 1 gram of tissue. # 2. SPECIFIC ABSORPTION RATE (SAR) #### 2.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are Middle than the limits for general population/uncontrolled. #### 2.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. (ρ) . The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{odv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by, $$SAR = C\left(\frac{\delta T}{\delta t}\right)$$ Where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where σ is the conductivity of the tissue, ρ is the mass density of the tissue and |E| is the rms electrical field strength. However for evaluating SAR of low power transmitter, electrical field measurement is typically applied. ### 3. SAR MEASUREMENT SETUP ### 3.1 The Measurement System Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the Following items: - Main computer to control all the system - 6 axis robot - Data acquisition system - Miniature E-field probe - Phone holder - Head simulating tissue The Following figure shows the system. The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass. ### 3.2 Probe For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with Following specifications is used - Dynamic range: 0.01-100 W/kg - Tip Diameter: 6.5 mm - Distance between probe tip and sensor center: 2.5mm - Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm) - Probe linearity: <0.25 dB - Axial Isotropy: <0.25 dB - Spherical Isotropy: <0.25 dB - Calibration range: 835to 2500MHz for head & body simulating liquid. Angle between probe axis (evaluation axis) and surface normal line: less than 30° Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 622091 annex technique using reference guide at the five frequencies. $$SAR = \frac{4\left(P_{fw} - P_{bw}\right)}{ab\delta}\cos^2\left(\pi \frac{y}{a}\right)e^{-(2z/\delta)}$$ Where: Pfw = Forward Power Pbw = Backward Power a and b = Waveguide dimensions = Skin depth #### Keithley configuration: Rate = Medium; Filter = ON; RDGS=10; FILTER TYPE = MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it. The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are: $$CF(N)=SAR(N)/VIin(N)$$ (N=1,2,3) The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using $$Vlin(N)=V(N)*(1+V(N)/DCP(N))$$ (N=1,2,3) Where DCP is the diode compression point in mV. #### 3.3 Probe Calibration Process #### 3.3.1 Dosimetric Assessment Procedure Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an with CALISAR, Antenna proprietary calibration system. #### 3.3.2 Free Space Assessment Procedure The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm². #### 3.3.3 Temperature Assessment Procedure E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulating head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe. Where: $\delta t = \exp osure time (30 seconds),$ $$SAR = C\left(\frac{\delta T}{\delta t}\right)$$ C = heat capacity of tissue (brain or muscle), δT = temperature increase due to RF exposure. SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component. Where: $$SAR = \frac{\sigma |E|^2}{\rho}$$ σ = simulated tissue conductivity, ρ = Tissue density (1.25 g/cm³ for brain tissue) #### 3.4 Phantom For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid. #### 3.5 Device Holder The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is Middle than 1°. Device holder | System Material | Permittivity | Loss Tangent | |-----------------|--------------|--------------| | Delrin | 3.7 | 0.005 | ### 4. TISSUE SIMULATING LIQUIDS For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in below table. The following table gives the recipes for tissue simulating liquids | Frequency Band
(MHz) | 450.00 | | | | |-----------------------------------|-----------|-------|--|--| | Tissue Type | Head Body | | | | | Ingredients (% by weight) | | | | | | Deionised Water | 38.56 | 51.16 | | | | Salt(NaCl) | 3.95 | 1.49 | | | | Sugar | 56.32 | 46.78 | | | | Tween 20 | 0.0 | 0.0 | | | | HEC | 0.98 | 0.52 | | | | Bactericide | 0.19 | 0.05 | | | | Triton X-100 | 0.0 | 0.0 | | | | DGBE | 0.0 | 0.0 | | | | Diethylenglycol
monohexylether | 0.0 | 0.0 | | | | Target dielectric parameters | | | | | | Dielectric Constant | 43.5 | 56.7 | | | | Conductivity (S/m) | 0.87 | 0.94 | | | Note: Please refer to the validation results for dielectric parameters of each frequency band. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer. **Table 1: Dielectric Performance of Tissue Simulating Liquid** | Temperature: 22.0~23.8°C, humidity: 54~60%. | | | | | | | | |---|------------------|----------------------------|-------|--------|----------|-----------|--| | Date | Freq.(MHz) | Liquid Parameters | Meas. | Target | Delta(%) | Limit±(%) | | | | Hood 450 | Relative Permittivity(cr): | 43.19 | | | 5 | | | 2017/02/22 | Head 450 | Conductivity(σ): | 0.83 | | | 5 | | | 2017/03/22 | Dody 450 | Relative Permittivity(cr): | 58.10 | | | 5 | | | Body 450 | Conductivity(σ): | 0.84 | | | 5 | | | # **5. UNCERTAINTY ASSESSMENT** The Following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa. ### 5.1 UNCERTAINTY EVALUATION FOR EUT SAR TEST | а | b | С | d | e=
f(d,k) | f | g | h=
c*f/e | i= c*g/e | k | |--|-------------|-------|-------|--------------|-----|-------|-------------|----------|-----| | Uncertainty Component | Sec. | Tol | Prob | Div. | Ci | Ci | 1g Ui | 10g Ui | Vi | | | | (+- % | | | (1g | (10g) | (+-%) | (+-%) | | | | |) | Dist. | |) | | | | | | Measurement System | T | T | 1 | T | | 1 | _ | 1 | T. | | Probe calibration | E.2.1 | 5.83 | N | 1 | 1 | 1 | 5.83 | 5.83 | ∞ | | Axial Isotropy | E.2.2 | 3.5 | R | $\sqrt{3}$ | 0.7 | 0.7 | 1.43 | 1.43 | ∞ | | Hemispherical Isotropy | E.2.2 | 5.9 | R | $\sqrt{3}$ | 0.7 | 0.7 | 2.41 | 2.41 | 8 | | Boundary effect | E.2.3 | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.58 | 8 | | Linearity | E.2.4 | 4.7 | R | $\sqrt{3}$ | 1 | 1 | 2.71 | 2.71 | ∞ | | System detection limits | E.2.5 | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.58 | ∞ | | Readout Electronics | E.2.6 | 0.5 | Ν | 1 | 1 | 1 | 0.5 | 0.5 | 8 | | Reponse Time | E.2.7 | 3.0 | R | $\sqrt{3}$ | 1 | 1 | 3.0 | 3.0 | ∞ | | Integration Time | E.2.8 | 1.4 | R | $\sqrt{3}$ | 1 | 1 | 0.81 | 0.81 | 8 | | RF ambient Conditions | E.6.1 | 3.0 | R | $\sqrt{3}$ | 1 | 1 | 1.73 | 1.73 | ∞ | | Probe positioner Mechanical Tolerance | E.6.2 | 1.4 | R | $\sqrt{3}$ | 1 | 1 | 0.81 | 0.81 | 8 | | Probe positioning with respect to Phantom Shell | E.6.3 | 1.4 | R | $\sqrt{3}$ | 1 | 1 | 0.81 | 0.81 | 8 | | Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation | E.5.2 | 2.3 | R | $\sqrt{3}$ | 1 | 1 | 1.33 | 1.33 | ∞ | | Test sample Related | | T | • | | _ | | | | | | Test sample positioning | E.4.2.
1 | 2.6 | N | 1 | 1 | 1 | 2.6 | 2.6 | N-1 | | Device Holder Uncertainty | E.4.1.
1 | 3.0 | N | 1 | 1 | 1 | 3.0 | 3.0 | N-1 | | Output power Power drift - SAR drift measurement | 6.6.2 | 5.0 | R | $\sqrt{3}$ | 1 | 1 | 2.89 | 2.89 | 8 | |--|-------------------------------|-----|------|------------|-----|------|-------|--------|-----| | Phantom and Tissue Para | Phantom and Tissue Parameters | | | | | | | | | | Phantom Uncertainty | | | | | | | | | | | (Shape and thickness | E.3.1 | 4.0 | R | $\sqrt{3}$ | 1 | 1 | 2.31 | 2.31 | 8 | | tolerances) | | | | | | | | | | | Liquid conductivity - | E.3.2 | 2.0 | R | $\sqrt{3}$ | 0.6 | 0.43 | 1.69 | 1.13 | 8 | | deviation from target value | L.3.2 | 2.0 | N | ν3 | 4 | 0.43 | 1.09 | 1.13 | 3 | | Liquid conductivity - | E.3.3 | 2.5 | N | 1 | 0.6 | 0.43 | 3.20 | 2.15 | М | | measurement uncertainty | ∟.5.5 | 2.5 | IN | ı | 4 | 0.43 | 3.20 | 2.13 | IVI | | Liquid permittivity - | E.3.2 | 2.5 | R | $\sqrt{3}$ | 0.6 | 0.49 | 1.28 | 1.04 | 8 | | deviation from target value | L.J.Z | 2.5 | IX | γο | 0.0 | 0.49 | 1.20 | 1.04 | 3 | | Liquid permittivity - | E.3.3 | 5.0 | N | 1 | 0.6 | 0.49 | 6.00 | 4.90 | М | | measurement uncertainty | ∟.ა.ა | 5.0 | IN | ı | 0.0 | 0.49 | 0.00 | 4.90 | IVI | | Combined Standard | | | RSS | | | | 11.55 | 12.0 | | | Uncertainty | | | | | | | | 7 | | | Expanded Uncertainty | | | K=2 | | | | ±23.1 | ±24.14 | | | (95% Confidence interval) | | | r\=2 | | | | 1 | ±24.14 | | ### 6. SAR MEASUREMENT EVALUATION #### 6.1 System Setup In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz,100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. #### 6.2 Validation Results After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %. | Frequency | 450MHz(H) | 450MHz(B) | |---------------------------------|------------|-----------| | Target value (1g) | 4.71 W/kg | 4.80 W/kg | | Test value
(1g 100 mW input) | 0.458 W/kg | 0.462W/kg | | Normalized value (1g) | 4.58 W/kg | 4.62 W/kg | Note: System checks the specific test data please see Annex D ### 7. OPERATIONAL CONDITIONS DURING TEST ### 7.1 Information on the testing The mobile phone antenna and battery are those specified by the manufacturer. The battery is fully charged before each measurement. The output power and frequency are controlled using a base station simulator. The mobile phone is set to transmit at its highest output peak power level. The mobile phone is test in the "cheek" and "tilted" positions on the left and right sides of the phantom. The mobile phone is placed with the vertical centre line of the body of the mobile phone and the horizontal line crossing the centre of the earpiece in a plane parallel to the sagittal plane of the phantom. **Illustration for Cheek Position** **Illustration for Tilted Position** Description of the "cheek" position: The mobile phone is well placed in the reference plane and the earpiece is in contact with the ear. Then the mobile phone is moved until any point on the front side get in contact with the cheek of the phantom or until contact with the ear is lost. Description of the "tilted" position: The mobile phone is well placed in the "cheek" position as described above. Then the mobile phone is moved outward away from the month by an angle of 15 degrees or until contact with the ear lost. Remark: Please refer to Appendix B for the test setup photos. # 7.2 Body-worn Configurations The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration. For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues. **Illustration for Body Worn Position** #### 7.3 Measurement procedure The Following steps are used for each test position - 1. Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface. - 2. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift. - 3. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. - 4. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated. ### 7.4 Description of interpolation/extrapolation scheme The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom. An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step. The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array. # 9. MEASUREMENT OF CONDUCTED PEAK OUTPUT POWER # 1. Conducted output power | Mode | Channel | Frequency
(MHz) | Highest output power(dBm) | |------|---------|--------------------|---------------------------| | | 1 | 462.5625 | 25.34 | | | 2 | 462.5875 | 25.32 | | | 3 | 462.6125 | 25.34 | | | 4 | 462.6375 | 25.32 | | | 5 | 462.6625 | 25.30 | | | 6 | 462.6875 | 25.29 | | | 7 | 462.7125 | 25.28 | | | 8 | 467.5625 | 24.77 | | | 9 | 467.5875 | 24.81 | | | 10 | 467.6125 | 24.76 | | PTT | 11 | 467.6375 | 24.76 | | FII | 12 | 467.6625 | 24.71 | | | 13 | 467.6875 | 24.75 | | | 14 | 467.7125 | 24.73 | | | 15 | 462.5500 | 25.25 | | | 16 | 462.5750 | 25.23 | | | 17 | 462.6000 | 25.22 | | | 18 | 462.6250 | 25.21 | | | 19 | 462.6500 | 25.22 | | | 20 | 462.6750 | 25.17 | | | 21 | 462.7000 | 25.22 | | | 22 | 462.7250 | 25.17 | ### 10. TEST RESULTS LIST Summary of Measurement Results | Temperature: 21 | Temperature: 21.0~23.8°C, humidity: 54~60%. | | | | | | |---|---|------------------|----------------|----------------|-----------------|----------------| | Phantom | Frequency | Antenna | 1g | SAR Value(| W/Kg), Limit: 8 | 3.0W/Kg | | Configurations | (MHz) | Positions | Measured | Scaling | Scaled | 50% duty cycle | | | | | SAR(W/Kg) | Factor | SAR(W/Kg) | SAR(W/Kg) | | Face toward Flat phantom (Held to face) | | | | ;) | | | | Rody (2.5 om | 462.5625 | External | 0.188 | 1.038 | 0.195 | 0.098 | | Body (2.5 cm | 467.6375 | External | 0.137 | 1.186 | 0.162 | 0.081 | | Separation) | 462.7250 | External | 0.188 | 1.079 | 0.203 | 0.101 | | | Back w | rith belt clip t | toward Flat ph | antom (Body | /-worn) | | | Pody | 462.5625 | External | 0.376 | 1.038 | 0.390 | 0.195 | | Body
(direct) | 467.6375 | External | 0.298 | 1.186 | 0.353 | 0.177 | | (direct) | 462.7250 | External | 0.416 | 1.079 | 0.449 | 0.224 | #### Note: 1. Scaling Factor calculation | | Tune-up power tolerance | SAR test channel | Scaling | |---------------------|---------------------------|------------------|---------| | | (dBm) | Power (dBm) | Factor | | | | 25.34 | 1.038 | | Push to Talk | Max output power =25+-0.5 | 24.76 | 1.186 | | | | 25.17 | 1.079 | - 2. According to KDB643646 D01 v01r03, when the 1-g SAR tested using the default batter and default accessories is ≤ 3.5W/Kg (corrected by Multiplying 50% for FM mode), testing for other channels are optional. - 3. For a analog PTT, only simplex communication technology was supported, so the SAR value need to be corrected by Multiplying 50%. - 4. The EUT is tested by 100% duty cycle. The EUT is controlled to continue transmitting. - 5. For SAR measurements, some SAR systems may have provisions to scale the measured results by means of "power scaling" to compute the 1-g SAR at a higher output power level. Scaling facor = $\frac{\text{Max output power(mW)}}{\text{SAR test channel Power(mW)}}$ 6. Head SAR is measured with the front surface of the radio positioned at 2.5 cm parallel to a flat phantom. Body SAR is measured with the radio placed in a body-worn accessory, positioned against a flat phantom, representative of the normal operating conditions expected by users and typically with a standard default audio accessory supplied with the radio. ### 11.ANNEX A PLOTS OF HIGH SAR TEST RESULTS #### **MEASUREMENT 1** Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2017.3.22 Measurement duration: 13 minutes 29 seconds ### A. Experimental conditions. | Phantom File | sam_direct_droit2_surf8mm.txt | |-----------------|-------------------------------| | Phantom | Validation plane | | Device Position | Flat phantom | | Band | 462.5625MHz | | Channels | Ch 1 | | Signal | FM | ### **B. SAR Measurement Results** | Frequency (MHz) | 462.5625000 | |-----------------------------------|-------------| | Relative permittivity (real part) | 43.193725 | | Conductivity (S/m) | 0.834296 | | Power drift (%) | -2.800000 | | Ambient Temperature: | 22.3°C | | Liquid Temperature: | 22.6°C | | ConvF: | 7.55 | | Crest factor: | 1:1 | Maximum location: X=1.00, Y=-31.00 SAR Peak: 6.75 W/kg | SAR 10g (W/Kg) | 0.136356 | |----------------|----------| | SAR 1g (W/Kg) | 0.188237 | #### **MEASUREMENT 2** Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2017.3.22 Measurement duration: 13 minutes 30 seconds ### A. Experimental conditions. | Phantom File | sam_direct_droit2_surf8mm.txt | |-----------------|-------------------------------| | Phantom | Validation plane | | Device Position | Flat phantom | | Band | 467.6375MHz | | Channels | Ch 11 | | Signal | FM | #### **B. SAR Measurement Results** | Frequency (MHz) | 467.6375000 | |-----------------------------------|-------------| | Relative permittivity (real part) | 43.193725 | | Conductivity (S/m) | 0.834296 | | Power drift (%) | -3.310000 | | Ambient Temperature: | 22.3°C | | Liquid Temperature: | 22.6°C | | ConvF: | 7.55 | | Crest factor: | 1:1 | Maximum location: X=6.00, Y=11.00 SAR Peak: 7.84 W/kg | SAR 10g (W/Kg) | 0.099164 | |----------------|----------| | SAR 1g (W/Kg) | 0.137137 | #### **MEASUREMENT 3** Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2017.3.22 Measurement duration: 13 minutes 30 seconds # A. Experimental conditions. | Aportinionital Containiono. | | |-----------------------------|-------------------| | Phantom File | surf_sam_plan.txt | | Phantom | Validation plane | | Device Position | Flat phantom | | Band | 462.7250MHz | | Channels | Ch 22 | | Signal | FM | #### **B. SAR Measurement Results** | Frequency (MHz) | 462.7250000 | |-----------------------------------|-------------| | Relative permittivity (real part) | 43.193725 | | Conductivity (S/m) | 0.834296 | | Power drift (%) | -2.140000 | | Ambient Temperature: | 22.3°C | | Liquid Temperature: | 22.6°C | | ConvF: | 7.55 | | Crest factor: | 1:1 | Maximum location: X=0.00, Y=16.00 SAR Peak: 6.06 W/kg | SAR 10g (W/Kg) | 0.134231 | |----------------|----------| | SAR 1g (W/Kg) | 0.188263 | #### **MEASUREMENT 4** Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2017.3.22 Measurement duration: 13 minutes 31 seconds # A. Experimental conditions. | Aportinionital Contantioner | | |-----------------------------|-------------------| | Phantom File | surf_sam_plan.txt | | Phantom | Validation plane | | Device Position | Flat phantom | | Band | 462.5625MHz | | Channels | Ch 1 | | Signal | FM | #### **B. SAR Measurement Results** | Frequency (MHz) | 462.5625000 | |-----------------------------------|-------------| | Relative permittivity (real part) | 58.097261 | | Conductivity (S/m) | 0.843652 | | Power drift (%) | -3.300000 | | Ambient Temperature: | 22.3°C | | Liquid Temperature: | 22.6°C | | ConvF: | 7.77 | | Crest factor: | 1:1 | Maximum location: X=17.00, Y=21.00 SAR Peak: 5.62 W/kg | SAR 10g (W/Kg) | 0.259236 | |----------------|----------| | SAR 1g (W/Kg) | 0.376352 | #### **MEASUREMENT 5** Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2017.3.22 Measurement duration: 13 minutes 30 seconds # A. Experimental conditions. | Phantom File | sam_direct_droit2_surf8mm.txt | |-----------------|-------------------------------| | Phantom | Validation plane | | Device Position | Flat phantom | | Band | 467.6375MHz | | Channels | Ch 11 | | Signal | FM | #### **B. SAR Measurement Results** | Frequency (MHz) | 467.6375000 | |-----------------------------------|-------------| | Relative permittivity (real part) | 58.097261 | | Conductivity (S/m) | 0.843652 | | Power drift (%) | -3.310000 | | Ambient Temperature: | 22.3°C | | Liquid Temperature: | 22.6°C | | ConvF: | 7.77 | | Crest factor: | 1:1 | # Maximum location: X=1.00, Y=-31.00 SAR Peak:4.75 W/kg | SAR 10g (W/Kg) | 0.205014 | |----------------|----------| | SAR 1g (W/Kg) | 0.298036 | #### **MEASUREMENT 6** Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2017.3.22 Measurement duration: 13 minutes 30 seconds ### A. Experimental conditions. | orinional conditional | | | | |-----------------------|-------------------|--|--| | Phantom File | surf_sam_plan.txt | | | | Phantom | Validation plane | | | | Device Position | Flat phantom | | | | Band | 462.7250MHz | | | | Channels | Ch 22 | | | | Signal | FM | | | #### **B. SAR Measurement Results** | Frequency (MHz) | 462.7250000 | | |-----------------------------------|-------------|--| | Relative permittivity (real part) | 58.097261 | | | Conductivity (S/m) | 0.843652 | | | Power drift (%) | 1.140000 | | | Ambient Temperature: | 22.3°C | | | Liquid Temperature: | 22.6°C | | | ConvF: | 7.77 | | | Crest factor: | 1:1 | | Maximum location: X=10.00, Y=-11.00 SAR Peak: 3.30 W/kg | SAR 10g (W/Kg) | 0.286372 | | | |----------------|----------|--|--| | SAR 1g (W/Kg) | 0.416031 | | | ### 12. ANNEX B SYSTEM CHECK DATA # 450MHz System Check Data(Head) Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2017.3.22 Measurement duration: 13 minutes 27 seconds ### A. Experimental conditions. | Phantom File | surf_sam_plan.txt | | | | |-----------------|-------------------|--|--|--| | Phantom | Validation plane | | | | | Device Position | | | | | | Band | 450MHz | | | | | Channels | | | | | | Signal | CW | | | | ### **B. SAR Measurement Results** #### **Band SAR** | | _ _ | | | |-----------------------------------|----------------|--|--| | Frequency (MHz) | 450.000000 | | | | Relative permittivity (real part) | 43.193725 | | | | Conductivity (S/m) | 0.834296 | | | | Power Drift (%) | 0.170000 | | | | Ambient Temperature: | 22.0°C | | | | Liquid Temperature: | 21.8°C | | | | ConvF: | 7.55 | | | | Crest factor: | 1:1 | | | Maximum location: X=-5.00, Y=-18.00 | SAR 10g (W/Kg) | 0.637619 | | |----------------|----------|--| | SAR 1g (W/Kg) | 1.037291 | | # **Z Axis Scan** | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|---------|--------|--------|--------| | SAR | 0.0000 | 1.0545 | 0.7926 | 0.49865 | 0.2764 | 0.1972 | 0.1328 | | (W/Kg) | | | | | | | | ### 450MHz System Check Data(Body) Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2017.3.22 Measurement duration: 13 minutes 27 seconds ### A. Experimental conditions. | permiental conditions. | | | | |------------------------|-------------------|--|--| | Phantom File | surf_sam_plan.txt | | | | Phantom | Validation plane | | | | Device Position | | | | | Band | 450MHz | | | | Channels | | | | | Signal | CW | | | #### **B. SAR Measurement Results** # **Band SAR** | Frequency (MHz) | 450.000000 | | |-----------------------------------|------------|--| | Relative permittivity (real part) | 58.097261 | | | Conductivity (S/m) | 0.843652 | | | Power Drift (%) | 0.170000 | | | Ambient Temperature: | 22.0°C | | | Liquid Temperature: | 21.8°C | | | ConvF: | 7.77 | | | Crest factor: | 1:1 | | Maximum location: X=7.00, Y=33.00 | SAR 10g (W/Kg) | 0.706428 | | |----------------|----------|--| | SAR 1g (W/Kg) | 1.156247 | | # **Z Axis Scan** | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 1.1038 | 0.9671 | 0.7264 | 0.5926 | 0.3061 | 0.2140 | | (W/Kg) | | | | | | | | # 13. ANNEX C GENERAL INFORMATION # 1. Identification of the Responsible Testing Laboratory | Company Name: | Shenzhen Morlab Communications Technology Co., Ltd. | |-------------------------------|--| | Department: | Morlab Laboratory | | Address: | FL.3, Building A, FeiYang Science Park, No.8 LongChang | | | Road, Block 67, BaoAn District, ShenZhen, GuangDong | | | Province, P. R. China | | Responsible Test Lab Manager: | Mr. Su Feng | | Telephone: | +86 755 36698555 | | Facsimile: | +86 755 36698525 | # 2. Identification of the Responsible Testing Location | Name: | Shenzhen Morlab Communications Technology Co., Ltd. | | | |----------|--|--|--| | | Morlab Laboratory | | | | Address: | FL.3, Building A, FeiYang Science Park, No.8 LongChang | | | | | Road, Block 67, BaoAn District, ShenZhen, GuangDong | | | | | Province, P. R. China | | | ### 3. List of Test Equipments | No. | Instrument | Туре | Cal. Date | Cal.
Due | |-----|------------------------------|---|-----------|-------------| | 1 | PC | Dell (Pentium IV 2.4GHz,
SN:X10-23533) | (n.a) | (n.a) | | 2 | Network Analyzer | Agilent(E5071B ,SN:MY42404762) | 2016-6-2 | 1year | | 3 | Voltmeter | Keithley (2000, SN:1000572) | 2016-6-2 | 1year | | 4 | Signal Generator | Agient (E8257D,SN:MY47461226) | 2016-6-3 | 1year | | 5 | Power Amplifier | Satimo Amplifier | N/A | 1year | | 6 | Power Meter | Agilent (E4416A, SN:MY45102093) | 2016-12-7 | 1year | | 7 | Power Sensor | Agilent (8482A, SN:MY41090849) | 2016-12-7 | 1year | | 8 | Probe | Satimo (SN:SN 37/08 EP80) | 2016-7-5 | 1year | | 9 | Dielectric
Assessment Kit | Speag DAK3.5 | 2016-7-5 | 1year | | 10 | Phantom | Satimo (SN:SN_36_08_SAM62) | N/A | N/A | | 11 | Liquid | Tianxu (Last Calibration: 2017-3-22) | N/A | N/A | | 12 | Dipole 450MHz | Satimo (SN 36/08 DIPB98) | 2016-7-5 | 1year | # 14. ANNEX D EUT TEST POSITION PHOTOS 1. Hold to face condition # 2. Body-worn condition # 3. Liquid Level Photo Body Liquid Liquid depth:15.5cm ### 4. EUT Front View ### 5. EUT Back View #### 6. Uncovered View # 7. Belt Clip View ***** END OF REPORT *****